The **Big Ideas** in **Physics** and How to Teach Them

TEACHING PHYSICS 11-18

Visible Physics

Ben Rogers

Director of Curriculum and Pedagogy: Paradigm Trust

Visible Physics

Ben Rogers - Director of Curriculum and Pedagogy: Paradigm Trust

Memory

The Ebbinghaus Forgetting Curve - 1885

The Surprisingly Powerful Influence of Drawing on Learning

The Picture Superiority Effect

kinetic energy kinetic energy kinetic energy

gravitational potential gravitational potential gravitational potential

thermal thermal thermal

The Surprisingly Powerful Influence of Drawing on Learning

The Picture Superiority Effect

kinetic energy kinetic energy kinetic energy

gravitational potential gravitational potential gravitational potential

thermal thermal thermal

The Surprisingly Powerful Influence of Drawing on Learning

The Picture Superiority Effect

Source: Fernandez et al 2018

Teaching

Should I explain a visual?

Should I explain a visual?

Source: Kalyuga, Chandler and Sweller (2000)

How should I explain my visual?

How should I explain my visual?

This chart shows the temperature level rise over the past 170 years. Scientists say this is at least in part attributable to human activity - the artificial increase in CO_2 levels globally.

separate text

How should I explain my visual?

retrieval

Source: Moreno and Mayer 1990

External Memory

Working Memory

Long Term Memory

External Memory

Working Memory

Long Term Memory

Teaching

Organising Knowledge

Group

Compare

Sequence

Cause and Effect

Ishikawa Diagram - Cause and Effect

Ishikawa Diagram - Cause and Effect

Ishikawa Diagram - Cause and Effect

Teaching

Tidy Layouts Reduce Cognitive Load

Using the Grid

Using	
the	
Grid	

Source: Moreno and Mayer 1990

Should I add 'seductive' details?

Adding detail intended to motivate and engage has a detrimental effect on learning.

Source: Harp and Mayer 1997

Summary

Explaining Images

- Explain images to novices (not to experts)
- Verbal beats labeled

Labelling Images

- Dual coding increases retention
- Avoid the Split Attention Effect

Tidiness Matters

- Use 'the grid' to design slides
- Insist on tidy working

Problem Solving

Computational Efficiency: Search and Inference

One end of a rope is secured to the floor while the other end is passed through a pulley directly above. The free end of the rope is attached to a 5N weight. The weight is suspended by the rope.

What is the size of the force required to suspend the pulley?

Computational Efficiency: Search and Inference

One end of a rope is secured to the floor while the other end is passed through a pulley directly above. The free end of the rope is attached to a 5N weight. The weight is suspended by the rope.

What is the size of the force required to suspend the pulley?

How much detail?

A demonstration, photo or video often shows too much detail for a novice.

This is a representational visual: it shows where the parts go.

This is an explanatory visual: it shows the relationship between parts.

How much detail? spring Τ masses \mathbf{X} Retort stand mg pictorial abstract concrete

Concrete and Abstract

Abstract

Abstract

thermal

KE

Abstract

Abstract

Potential Difference

Summary

Computational Efficiency

 Design diagrams and visuals to reduce search and inference.

Concrete Pictorial Abstract

 Move up and down the ladder of abstraction.

Drawing with the Body

"When thought overflows the mind, the mind puts it back into the world."

Tversky 2018

Gestures for Thinking

Emblem - classroom gestures with agreed meaning.

Metaphoric hand signals which represent abstract ideas.

Gestures for Explaining

representational

beat

no gesture

Does Teacher Gesture Improve Learning?

Summary

Gestures Support Memory

• When learners use gesture, retrieval is enhanced.

Gestures Support Teaching

 When teachers use gesture, learning is enhanced.

Gestures Support Problem Solving

 When learners are encouraged to use gesture, problem solving is enhanced.

Theoretical Influences in this Presentation

Oliver Caviglioli

Clark and Lyons

Barbara Tversky

Graphical Influences in this Presentation

Byrne's Euclid

Grid System

xkcd

The end!