When knowledge is wrong…

Babies are born knowing physics. They express surprise when an object appears to be suspended in mid-air or pass through walls (nice article here). These are the primitive physics schemas we are all born with. Onto these, we add experiences from our lives: metals are cold; batteries run out of charge; the sun moves. Then in physics lessons we try to supplant this knowledge with formalised knowledge. With mixed results.

A metal cup to keep drinks cold.

Continue reading “When knowledge is wrong…”



Sir Isaac Newton

Definitio. I.

Quantitas materiæ est mensura ejusdem orta ex illius densitate et magnitudine conjunctim.

Definition I

The quantity of matter is the measure of the same, arising from its density and bulk conjunctly.

                        (Newton, translation by Motte)

Continue reading “Definitions”

An Accretion of Science Writers

Thirty science writers and teachers who write have formed a group to support and promote brilliant science writing for children and young adults.

Science writing for young people should inspire as well as teach; it must be map and guide. Young people need to be free to explore the universe through words. The writing must be very good.

This takes technical expertise; literary skill and an understanding of children’s learning. Our science writers’ circle brings writers together to share these skills to write outstanding science texts.

We meet online with a forum for sharing, discussion and feedback. We are a community with a common goal: brilliant science writing for young people.

The group is called the science writers’ circle and we are one week old. Watch this space.


I Asked 100 Scientists…. My Royal Society of Chemistry Blog

The amount of time spent reading by scientists and engineers and who taught them.
The amount of time spent reading by scientists and engineers and who taught them.

I wanted to know how scientists and engineers learnt to read professional texts, so I asked some. 100 professional scientists and engineers responded. The Royal Society of Chemistry asked me to write a blog about the results and here it is.

Many thanks to David Sait (@RSC_EIC) and the editing team at Education in Chemistry.

Of The Cells and Pores of Frothy Bodies

Cells extract from Micrographia
Cells extract from Micrographia

Science is a practical subject. It is also a literary subject. Reading science texts is important. It is the key to a scientific career and should have equal status to practical work in school’s curricula. It doesn’t. I have taught children about cells for twenty years, but until recently, I had never read Hooke’s account of his discovery. I also haven’t read Newton’s Principia and I’ve got a physics degree. There, I’ve said it. It’s as though I’ve only read the York Notes and not the novel.

My last blog was about adapting older texts for use in schools (here). I used a travel journal extract by Mary Kingsley, a Victorian scientific traveller. It is an engaging text full of adventure, charm and bravery. Children enjoy it. I have written about adapting Origin of Species (here): an ongoing project.  Continue reading “Of The Cells and Pores of Frothy Bodies”

Writing to Learn (not Learning to Write)

A first draft using Slow Writing techniques.
A first draft using Slow Writing techniques.

Writing is a process of deep thinking. It slows and clarifies thought: paragraph by paragraph; sentence by sentence; word by word. It allows the writer to go back, challenge and improve. It is perfect for science teaching.

Science lessons should be full of writing. Exercise books should be full of wonderful texts written by learners – phrases, sentences, paragraphs and complete pieces – because every piece of text involves deep thought.

Primary teachers know how to teach writing. Plenty of thought has gone into developing programmes and strategies to help pupils develop their writing skills. I love the Ruth Miskin Literacy and Language programme and everything by Pie Corbett – particularly Talk For Writing Across The Curriculum.

Both are brilliant at teaching children how to write different nonfiction writing styles, but their strategies promote the writing above the content. When I am teaching, the writing has to support the science, not the other way around.

Another challenge is time. To create a single piece of writing, most programmes take many days and involve talking, reading and practice before students settle down to write. I don’t have that time.

So I have to adapt the methods. These are my 5 key principles:

  1. Teach the content. Make it concrete. Teach it so the students can explain it to someone else.
  2. Talk before writing; pupils write better sentences when they rehearse the language first.
  3. Model the text. Show students what their work is supposed to look like. This is easier with fiction than nonfiction – fiction can’t be made “incorrect” by making changes. Making changes to nonfiction texts can make it factually wrong. You have to be very clear about what to change and what to keep. Choosing the right model text is vital (I write my own – it’s quicker than finding one that fits). High attaining learners may be able to use a model from another topic (or even subject) and take useful elements from that, but most learners need a model that is similar. In the food web example above, I gave pupils a model text using a different food web. The structure and even some of the sentences from the pupil’s work have been “magpied” from mine. That’s fine. The example in the middle paragraph is the student’s; that was my priority and that’s how we completed the whole lesson in one hour.
  4. Support the heavy lifting. Remember what you are asking your students to do:
    1. Learn a new and challenging scientific concept or skill.
    2. Put individual thoughts into clear sentences using new, sophisticated terminology.
    3. Sequence those ideas so that it makes sense to a reader.
    4. Add in the structural sentences that draw readers in and guide them through the text.

I find @Learningspy’s Slow Writing strategies helpful and I’m not the first to adapt Slow Writing for science (see here). In the food web example above, I asked my pupils to do the following:


  • use the word complicated to describe the feeding relationships in a pond.

Middle Paragraph:

  • give an example of a predator.
  • give an example of prey.
  • give an example that is both.


  • describe how a food web helps us understand the environment.

You can see where my writer has used these in her draft.

5. Piggy-back on English lessons – plan the science curriculum to benefit from the English teaching. When students are learning how to write an explanation, that’s the time to get them to write explanations in science too.

When students have taken the time to explain a scientific concept in their own words, they have been engaging with the idea for an extended period of time. They have challenged their understanding. There is nowhere to hide. Writing is a window into a learner’s mind; it reveals understanding and misunderstanding to both the learner and the teacher. You don’t get much better than that.

A Pocketful of Proxies

Measuring progress within a course.
Measuring progress within a course.

Progress is in the air. If we could measure progress before it was too late, we could be far clearer about what works in the classroom. I’ve been reading (again) Daniel T WIllingham’s book Why Children Don’t Like Schools: http://www.amazon.co.uk/Why-Dont-Students-Like-School/dp/047059196X which has a great final chapter on improving teaching. He describes how difficult it is to measure the effects different teaching strategies have. Daisy Christodoulou’s summary of the recent Sutton Trust review on teaching:  https://thewingtoheaven.wordpress.com/2014/10/31/new-report-by-the-sutton-trust-what-makes-great-teaching/ also refers to the importance of proxies for measuring progress.

So I thought I could start the ball rolling with my proxies for progress.

KIRF Quizes

KIRFs (Key instant recall facts) are the facts that make comprehension possible. If they come rapidly to mind, your learners will perform well in an exam. I split the KIRF quizz progress proxy into short term and long term recall. Short term can be at the end of a lesson, the start of the next lesson, the end of the week etc. It only tests the KIRFs covered in that period. The long-term KIRFs are a mixture of everything covered so far. How often you assess these will depend on your subject, but fortnightly/monthly seems reasonable.

Reading Comprehension

In August, I wrote a blog about assessing reading comprehension (what part don’t you get?) Reading comprehension is well correlated to exam performance, so an improvement of reading comprehension should be a good proxy for progress.  The reading assessment I adapted was designed to be diagnostic. If used several times across a year it will show development across skills affecting a reader’s ability to interpret texts. The teacher can explicitly teach any of these skills and check for progress.

Past Paper Questions

Surely the gold standard of showing progress is performance in past papers? Well, I would have thought so too, but experience suggests they are not perfect predictors. Given how time consuming mock tests are both in terms of marking and then, just when you have no time or energy left, for gaps analysis, I suggest using selected past paper questions more frequently as a more useful proxy. They show immediate progress within a lesson and careful selection of questions can also demonstrate progress over time if students are able to answer questions months after studying a topic.

Written Explanations

Writing is a great way to record understanding. Unlike a conversation, it is permanent and can be examined in detail. The difficulty is showing progress when two writing topics are different; the quality of writing can be compared (effective use of vocabulary, structure and connectives such as ‘therefore’ and ‘because’), but comparing the understanding of two separate topics, for example food webs and terminal velocity is not straightforward. However, if you are happy to repeat the same written task several times over the duration of the course, or a very similar task, progress can easily be monitored. For example, there is a common GCSE physics question on terminal velocity. Spreading these written tasks out over the course will give a clear indicator of the progress in understanding.

In summary, measuring progress demands a little bit of planning: you need to show before and after. Quick tests show whether your students have really learnt what you believe they have and spaced tests show whether they have retained it. Quizzes are great for key recall facts, but other assessments are useful for understanding. All of these proxies are achievable, but might not be relevant for your class or subject. This blog is intended to give a few ideas. Measuring progress might be the silver bullet we need to improve the quality of teaching and learning. It’s worth a try.


Create a free website or blog at WordPress.com.

Up ↑